
Determining Stack Offsets
Prof. James L. Frankel

Harvard University

Version of 6:12 PM 21-Nov-2023
Copyright © 2023, 2020, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Stack Frame Offsets

• Lowest offsets (Top of Stack): Callee’s argument build area
• For excess arguments to be passed to subroutines we call

• Possible unused word for double-word alignment
• General register save area

• Return address ($ra)
• Old frame pointer ($fp)
• $s0 through $s7
• $a0 through $a3

• Temps
• Used by compiler-generated code to save values in $t registers or when not all data

fits in registers (i.e., when any registers are spilled)

• Highest offsets: Local (automatic) variables

2

Callee’s argument build area

• Offsets start at +0

• The argument build area must be at the lowest addresses in the caller’s
stack frame
• This means that these arguments will be just past the stack frame allocated for the

callee

• If we need to access arguments on the stack that have been passed to us,
they have offsets just greater than the offsets for any data in our stack
frame

• The argument build area is used only when there are more than four words
of parameters to be passed
• The first four words of parameters are passed in $a0 through $a3 (rather than in the

argument build area)

3

Unused word for double-word alignment

• If the stack frame size is not a multiple of eight bytes, this word is
reserved in the stack frame
• It guarantees that all stack frames are double-word aligned

• If addr is an integral value to be rounded up to a multiple of eight, use
the following expression
• ((addr+7)/8)*8

or equivalently

• ((addr+7) >> 3) << 3

4

General register save area

• Always reserve space for $a0 through $a3, the return address ($ra), and old
frame pointer ($fp)

• The return address and old frame pointer are always saved into the stack frame

• The MIPS calling conventions call for argument registers to be saved into the stack
frame only if
• A particular argument register is used for a passed parameter
 AND
• Our subroutine is not a leaf subroutine

• That is, it calls at least one subroutine
• However, in our compilers, we will always save all argument registers into the stack frame if

they are used for a passed parameter (even if the subroutine is a leaf subroutine)
• This allows the saved argument registers in the stack frame to be accessed in exactly the same way that

a local variable would be accessed

• All $s registers (that are modified) are saved into the stack frame
• In our compilers, we will always save all of the $s registers into the stack frame

5

Additional Simplifications for Your Initial
Compiler
• Always leave room in the stack frame for all $t registers ($t0 through $t9)

• Before each function call, save all $t registers

• After each function call, restore all $t registers

• Use all $s and then all $t registers when you assign registers

• Don’t try to implement any functions that require more than four words for
parameters

• When generating IR code, at the start of each statement, reset the register
number to zero from which temporary registers are assigned

6

Possible Later Optimizations

• Analyze which $t registers are live across calls and
• Allocate space in the stack frame for only those $t registers that are live across any calls
• For each call, only save and then restore those $t registers that are live across that call

• Allow more than four words of arguments to functions
• In each function, determine the maximum number of words required for function calls
• Allocate space in the Argument Build Area for the maximum number of words in excess of

four
• For each function call, store all arguments in excess of four in the Argument Build Area

• Implement a better algorithm for temporary to register assignment – perhaps
graph coloring

7

Stack Frame Limitation

• Because we’re accessing variables in the stack frame using an offset
off the frame pointer ($fp), our address range is limited
• The offset field is sixteen bits in length

8

Temps

• If the compiler does not have sufficient registers for its code
generation, space is allocated here for registers contents to be saved
and restored

• This use of memory to save and restore values in registers is called
spilling

9

Local (automatic) variables

• Offsets for local (automatic) variables will be assigned in the order in
which variables are defined

• Variables in blocks at the same nesting level inside functions will
share memory

• Ensure word alignment for word-size variables

• Ensure half-word alignment for half-word-size variables

• There is no required alignment for byte-size variable

10

Local (automatic) variables example

int main(void) { /* If n is the beginning offset for local variables, … */
 int l0i, l0j, l0k; /* l0i @ offset +n; l0j @ offset +n+4; l0k @ offset +n+8 */
 char l0c1; /* l0c1 @ offset +n+12 */
 short int l0s1; /* l0s1 @ offset +n+14 – NOTE: this offset is not +n+13 */
 short int l0s2; /* l0s2 @ offset +n+16 */
 {
 int l1i; /* l1i @ offset +n+20 – NOTE: this offset is not +n+18 */
 }
 {
 int l1j; /* l1j @ offset +n+20 – NOTE: this offset is not +n+18 */
 {
 int l2i; /* l2i @ offset +n+24 */
 }
 {
 int l2j; /* l2j @ offset +n+24 */
 }
 }
} /* Total bytes for local variables for main: 28 */

11

Forcing word or half-word alignment

• If addr is an integral value to be rounded up to a multiple of four, use
the following expression
• ((addr+3)/4)*4

or equivalently

• ((addr+3) >> 2) << 2

• If addr is an integral value to be rounded up to a multiple of two, use
the following expression
• ((addr+1)/2)*2

or equivalently

• ((addr+1) >> 1) << 1

12

Forcing arbitrary alignment

• If addr is an integral value to be rounded up to a multiple of multiple,
use the following expression
• ((addr+multiple-1)/multiple)*multiple

13

	Slide 1: Determining Stack Offsets
	Slide 2: Stack Frame Offsets
	Slide 3: Callee’s argument build area
	Slide 4: Unused word for double-word alignment
	Slide 5: General register save area
	Slide 6: Additional Simplifications for Your Initial Compiler
	Slide 7: Possible Later Optimizations
	Slide 8: Stack Frame Limitation
	Slide 9: Temps
	Slide 10: Local (automatic) variables
	Slide 11: Local (automatic) variables example
	Slide 12: Forcing word or half-word alignment
	Slide 13: Forcing arbitrary alignment

